miércoles, 9 de junio de 2010


UnUnTrIo


El Ununtrio (nombre temporal , del latim uno, uno, tres ) o Eka-tálio ( semejante al tálio) es un elemento químico sintético, símbolo químico temporal Uut, número atómico 113 ( 113 prótons y 113 elétrons ), probablemente de masa atómica [284] u. Pertenencia al grupo 13 de la tabla periódica.
Descubierto en el inicio de 2004 por un equipo de científicos rusos y norteamericanos. ES un transurânico , probablemente un sólido de aspecto prateado.

Historia
En 1 de febrero de 2004, el ununtrio y el ununpentio fueron sintetizados, conforme relatado por un equipo de científicos rusos de Dubna (en inglés "Joint Institute sea Nuclear Research"), y científicos norteamericanos del Lawrence Livermore National Laboratory. Este descubrimiento aún está a la espera de confirmación. [1]
En 28 de septiembre de 2004, un equipo de científicos japoneses declararon que obtuvieron éxito en la obtención de este elemento. [2]
(Morita et al , Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113, J. Phys. Soc. Jpn., Vol. 73, En el.10. También comunicado a la prensa, en japonés)
"Ununtrium" es un nombre sistemático, temporal, indicado por la IUPAC. No puede ser encontrado en la naturaleza, pues para obte-lo su estructura tiene que ser modificada para llegar a la uno resultado exacto. Elemento poco usado, por ser casi desconocido.




TaLiO

El talio es un elemento químico de la tabla periódica cuyo símbolo es Tl y su número atómico es 81. Este metal del bloque p gris, blando y maleable es parecido al estaño, pero se decolora expuesto al aire. Es muy tóxico y se ha empleado como rodenticida e insecticida, pero este uso ha disminuido o eliminado en muchos países debido a sus efectos cancerígenos. También se emplea en detectores infrarrojos.
El 19 de enero de 1990 muere Osho y sus adeptos declaran que es a causa de una conspiración del gobierno estadounidense, que lo habría expuesto al talio durante 12 días que lo mantuvo preso. En 2006 se sospechó que Alexander Litvinenko fue envenenado con talio, muriendo tres semanas más tarde.

Características principales
Este metal es muy blando y maleable; se puede cortar con un cuchillo. Al ser expuesto al aire pasa de presentar un brillo metálico a rápidamente empañarse con un tono gris azulado parecido al plomo.
Sus estados de oxidación más comunes son +1 y +3 (a diferencia del resto de los elementos del grupo, en los que sólo el +3 es más frecuente, lo que se denomina efecto del par inerte).
Su punto de fusión es más bajo de lo esperado y es líquido en un intervalo muy amplio, por lo que se emplea en termómetros.
Obtención

La obtención del talio tiene una dificultad principal: la pequeña concentración en que se encuentra en minerales.
Se obtiene principalmente de las partículas de los humos de plomo y Zinc fundidos, y de los barros obtenidos de la fabricación de ácido sulfúrico. El metal se obtiene por electrólisis de una disolución acuosa de sus sales. También se obtiene por reducción con sodio metálico y por precipitación.
Aplicaciones
Se utiliza en raras ocasiones, excepto para la fabricación de calidades especiales de vidrio. En el pasado, los compuestos de talio encontraron aplicaciones tan diversas como veneno o golosina para ratas, lociones capilares, insecticidas.
Aleado con mercurio forma una aleación líquida que congela a -60°C y se utiliza para termómetros de bajas temperaturas.
El sulfato de talio, que es inodoro, insípido y muy venenoso, se usa para exterminar roedores e insectos. El sulfuro de talio se emplea en la fabricación de células fotoeléctricas sensibles a las radiaciones infrarrojas.
En algunos sistemas militares de comunicación se han utilizado los cristales de bromoyoduro de talio como transmisores de la radiación infrarroja y los cristales de oxisulfuro de talio como receptores de la misma.
En algunos equipos portátiles de escintilación se usan cristales de yoduro de sodio activados con talio para detectar radiación gamma.
Las sales de talio se utilizan también para dar color verde a los fuegos de artificio.



InDiO
El indio es un elemento químico de número atómico 49 situado en el grupo 13 de la tabla periódica de los elementos. Su símbolo es In. Es un metal poco abundante, maleable, fácilmente fundible, químicamente similar al aluminio y al galio, pero más parecido al zinc (de hecho, la principal fuente de obtención de este metal es a partir de las minas de zinc). Entre otras aplicaciones, se emplea para formar películas delgadas que sirven como películas lubricantes.


Características principales

Lingote de indio.
El indio es un metal blanco plateado, muy blando, que presenta un lustre brillante. Cuando se dobla el metal emite un sonido característico.
Su
estado de oxidación más característico es el +3, aunque también presenta el +2 en algunos compuestos.
Aplicaciones
Se empleó principalmente durante la
Segunda Guerra Mundial como recubrimiento en motores de alto rendimiento de aviones. Después de esto se ha destinado a nuevas aplicaciones en aleaciones, en soldadura y en la industria electrónica.
A mediados y finales de los años 1980 despertó interés el uso de fosfuros de indio semiconductores y películas delgadas de óxidos de indio y estaño para el desarrollo de
pantallas de cristal líquido (LCD). Esto es debido a que el uso del indio permitió la obtención del color azul en diodos LED, que se había resistido durante años.
Otras aplicaciones:
En la fabricación de aleaciones de bajo punto de fusión. Una
aleación con un 24% de indio y un 76% de galio es líquida a temperatura ambiente.
Para hacer
fotoconductores, transistores de germanio, rectificadores y termistores.
Se puede depositar sobre otros metales y evaporarse sobre un
vidrio formando un espejo tan bueno como los hechos con plata, pero más resistente a la corrosión.
Su óxido se emplea en la fabricación de paneles electroluminiscentes.
Historia

El indio (nombre procedente de la línea de color índigo de su espectro atómico) fue descubierto por Ferdinand Reich y Theodor Richter en 1863 cuando estaban buscando talio en unas minas de cinc mediante un espectrógrafo. Fue aislado por Ritcher en 1867.
Abundancia y obtención [
editar]
Se produce principalmente a partir de los residuos generados durante el procesado de minas de
Zinc. También se encuentra en minas de hierro, plomo y cobre. Se obtiene mediante la electrólisis de sus sales.
La cantidad de indio consumido está muy relacionada con la producción mundial de
pantallas de cristal líquido (LCD). El aumento de la eficiencia de producción y reciclado (especialmente en Japón) mantiene el equilibrio entre la demanda y el suministro. El precio medio del indio en el 2000 fue de 188 dólares por kilogramo.
Hasta 1924 sólo había un gramo aislado del elemento en el mundo. Se estima que en la
corteza terrestre hay unos 0,1 ppm de indio (aproximadamente tan abundante como la plata). El principal productor de indio es Canadá, que produjo 31.100 kg en 1997.
Precauciones

Hay ciertas evidencias no confirmadas que sugieren que el indio presenta una toxicidad baja. Sin embargo, en la industria de semiconductores y de soldadura, en donde las exposiciones son relativamente altas, no ha habido noticias de efectos colaterales.
FUENTE:http://es.wikipedia.org/wiki/Indio_(elemento)



GaLiO
El galio es un elemento químico de la tabla periódica de número atómico 31 y símbolo Ga.
Características principales El galio es un metal blando, grisáceo en estado líquido y plateado brillante al solidificar, sólido deleznable a bajas temperaturas que funde a temperaturas cercanas a la de la ambiente (como cesio, mercurio y rubidio) e incluso cuando se lo agarra con la mano por su bajo punto de fusión (28,56 °C). El rango de temperatura en el que permanece líquido es uno de los más altos de los metales (2174 °C separan sus punto de fusión y ebullición) y la presión de vapor es baja incluso a altas temperaturas. El metal se expande un 3,1% al solidificar y flota en el líquido al igual que el hielo en el agua.
Presenta una acusada tendencia a subenfriarse por debajo del punto de fusión (permaneciendo aún en estado líquido) por lo que es necesaria una semilla (un pequeño sólido añadido al líquido) para solidificar el líquido. La cristalización no se produce en ninguna de las estructuras simples; la fase estable en condiciones normales es ortorrómbica, con 8 átomos en cada celda unitaria en la que cada átomo sólo tiene otro en su vecindad más próxima a una distancia de 2,44 Å y estando los otros seis a 2,83 Å. En esta estructura el enlace químico formado entre los átomos más cercanos es covalente siendo la molécula Ga2 la que realmente forma el entramado cristalino.
A otra presión y temperatura se han encontrado numerosas fases estables y metaestables distintas.
El galio corroe otros metales al difundirse en sus redes cristalinas.


Aplicaciones
La principal aplicación del galio (arseniuro de galio) es la construcción de circuitos integrados y dispositivos optoelectrónicos como diodos láser y LED.
Se emplea para dopar materiales semiconductores y construir dispositivos diversos como transistores.
En termómetros de alta temperatura por su bajo punto de fusión.
El galio se alea con facilidad con la mayoría de los metales y se usa en aleaciones de bajo punto de fusión.
El isótopo Ga-67 se usa en medicina nuclear.
Se ha descubierto recientemente que aleaciones galio-aluminio en contacto con agua produce una reacción química dando como resultado hidrógeno. Este método para la obtención de hidrógeno no es rentable, ni ecológico, ya que requiere la doble fundición del aluminio, con el consiguiente gasto energético.


Historia
El galio (del latín Gallia, Francia), fue descubierto mediante espectroscopia por Lecoq de Boisbaudran en 1875 por su característico espectro (dos líneas ultravioletas) al examinar una blenda de zinc procedente de los Pirineos. Ese mismo año lo aisló por electrólisis del hidróxido en una solución de hidróxido potásico (KOH) y le dio el nombre de su país natal Gallia, y el suyo propio por un juego de palabras de los que gustaban a los científicos de finales del siglo XIX ya que gallus significa gallo, coq en francés como su nombre Lecoq.
Antes de su descubrimiento la mayoría de sus propiedades fueron predichas y descritas por Mendeleyev —que lo llamó eka-aluminio— basándose en la posición que debía ocupar el elemento en la tabla periódica.
Abundancia y obtención [editar]
Se hallan trazas del metal en minerales como la bauxita, carbón, diasporo, germanita y esfalerita y es subproducto en los procesos de obtención de varios metales



FUENTE:http://es.wikipedia.org/wiki/Galio


AlUmInIo
El aluminio es un elemento químico, de símbolo Al y número atómico 13. Se trata de un metal no ferromagnético. Es el tercer elemento más común encontrado en la corteza terrestre. Los compuestos de aluminio forman el 8% de la corteza de la tierra y se encuentran presentes en la mayoría de las rocas, de la vegetación y de los animales.[1] En estado natural se encuentra en muchos silicatos (feldespatos, plagioclasas y micas). Como metal se extrae únicamente del mineral conocido con el nombre de bauxita, por transformación primero en alúmina mediante el proceso Bayer y a continuación en aluminio metálico mediante electrólisis.
Este metal posee una combinación de propiedades que lo hacen muy útil en ingeniería mecánica, tales como su baja densidad (2.700 kg/m3) y su alta resistencia a la corrosión. Mediante aleaciones adecuadas se puede aumentar sensiblemente su resistencia mecánica (hasta los 690 MPa). Es buen conductor de la electricidad y del calor, se mecaniza con facilidad y es relativamente barato. Por todo ello es desde mediados del siglo XX[2] el metal que más se utiliza después del acero.
Fue aislado por primera vez en 1825 por el físico danés H. C. Oersted. El principal inconveniente para su obtención reside en la elevada cantidad de energía eléctrica que requiere su producción. Este problema se compensa por su bajo coste de reciclado, su dilatada vida útil y la estabilidad de su precio.
HISTORIA
Tanto en Grecia como en la Antigua Roma se empleaba el alumbre (del latín alūmen, -ĭnis, alumbre), una sal doble de aluminio y potasio como mordiente en tintorería y astringente en medicina, uso aún en vigor.
Generalmente se reconoce a Friedrich Wöhler el aislamiento del aluminio en 1827. Aun así, el metal fue obtenido, impuro, dos años antes por el físico y químico danés Hans Christian Ørsted. En 1807, Humphrey Davy propuso el nombre aluminum para este metal aún no descubierto, pero más tarde decidió cambiarlo por aluminium por coherencia con la mayoría de los nombres de elementos, que usan el sufijo -ium. De éste derivaron los nombres actuales en inglés y en otros idiomas; no obstante, en los EE. UU. con el tiempo se popularizó el uso de la primera forma, hoy también admitida por la IUPAC aunque prefiere la otra
El aluminio tiene nueve isótopos cuyas masas atómicas varían entre 23 y 30 u. Tan sólo el 27Al, estable, y 26Al, radiactivo con un periodo de semidesintegración de 7,2×105 años, se encuentran en la naturaleza. El 26Al se produce en la atmósfera al ser bombardeado el argón con rayos cósmicos y protones. Los isótopos de aluminio tienen aplicación práctica en la datación de sedimentos marinos, hielos glaciares, meteoritos, etc. La relación 26Al/10Be se ha empleado en el análisis de procesos de transporte, deposición, sedimentación y erosión a escalas de tiempo de millones de años.
El 26Al cosmogénico se aplicó primero en los estudios de la Luna y los meteoritos. Éstos últimos se encuentran sometidos a un intenso bombardeo de rayos cósmicos durante su viaje espacial, produciéndose una cantidad significativa de 26Al. Tras su impacto contra la Tierra, la atmósfera, que filtra los rayos cósmicos, detiene la producción de 26Al permitiendo determinar la fecha en la que el meteorito cayó.
Aplicaciones y usos
Ya sea considerando la cantidad o el valor del metal empleado, el uso industrial del aluminio excede al del cualquier otro metal exceptuando el hierro / acero. Es un material importante en multitud de actividades económicas y ha sido considerado un recurso estratégico en situaciones de conflicto.
Características físicas
Entre las características físicas del aluminio, destacan las siguientes:
Es un metal ligero, cuya densidad es de 2.700 kg/m3 (2,7 veces la densidad del agua), un tercio de la del acero.
Tiene un punto de fusión bajo: 660 °C (933 K).
El peso atómico del aluminio es de 26,9815 u.
Es de color blanco brillante, con buenas propiedades ópticas y un alto poder de reflexión de radiaciones luminosas y térmicas.
Tiene una elevada conductividad eléctrica comprendida entre 34 y 38 m/(Ω mm2) y una elevada conductividad térmica (80 a 230 W/(m·K)).
Resistente a la corrosión, a los productos químicos, a la intemperie y al agua de mar, gracias a la capa de Al2O3 formada.
Abundante en la naturaleza. Es el tercer elemento más común en la corteza terrestre, tras el oxígeno y el silicio.
Su producción metalúrgica a partir de minerales es muy costosa y requiere gran cantidad de energía eléctrica.
Material barato y fácil de reciclar.
Características mecánicas
Entre las características mecánicas del aluminio se tienen las siguientes:
De fácil mecanizado debido a su baja dureza.
Muy maleable, permite la producción de láminas muy delgadas.
Bastante dúctil, permite la fabricación de cables eléctricos.
Material blando (Escala de Mohs: 2-3). Límite de resistencia en tracción: 160-200 N/mm2 [160-200 MPa] en estado puro, en estado aleado el rango es de 1.400-6.000 N/mm2. El duraluminio fue la primera aleación de aluminio endurecida que se conoció, lo que permitió su uso en aplicaciones estructurales.
Para su uso como material estructural se necesita alearlo con otros metales para mejorar las propiedades mecánicas, así como aplicarle tratamientos térmicos.
Permite la fabricación de piezas por fundición, forja y extrusión.
Material soldable.
Con CO2 absorbe el doble del impacto.
Características químicas

Estructura atómica del aluminio.
Debido a su elevado estado de oxidación se forma rápidamente al aire una fina capa superficial de óxido de aluminio (Alúmina Al2O3) impermeable y adherente que detiene el proceso de oxidación, lo que le proporciona resistencia a la corrosión y durabilidad. Esta capa protectora, de color gris mate, puede ser ampliada por electrólisis en presencia de oxalatos. Ciertas aleaciones de alta dureza presentan problemas graves de corrosión intercristalina.
El aluminio tiene características anfóteras. Esto significa que se disuelve tanto en ácidos (formando sales de aluminio) como en bases fuertes (formando aluminatos con el anión [Al (OH)4]-) liberando hidrógeno.
La capa de óxido formada sobre el aluminio se puede disolver en ácido cítrico formando citrato de aluminio.
El principal y casi único estado de oxidación del aluminio es +III como es de esperarse por sus tres electrones en la capa de valencia (Véase también: metal pesado, electrólisis).
El aluminio reacciona con facilidad con HCl, NaOH, ácido perclórico, pero en general resiste la corrosión debido al óxido. Sin embargo cuando hay iones Cu2+ y Cl- su pasivación desaparece y es muy reactivo.
Los alquilaluminios, usados en la polimerización del etileno,[6] son tan reactivos que destruyen el tejido humano y producen reacciones exotérmicas violentas al contacto del aire y del agua.[7]
El óxido de aluminio es tan estable que se utiliza para obtener otros metales a partir de sus óxidos (cromo, manganeso, etc.) por el proceso aluminotérmico.

BOrO


BORO
El boro es un elemento químico de la tabla periódica que tiene el símbolo B y número atómico 5. Es un elemento metaloide, semiconductor, trivalente que existe abundantemente en el mineral bórax. Hay dos alótropos del boro; el boro amorfo es un polvo marrón, pero el boro metálico es negro. La forma metálica es dura (9,3 en la escala de Mohs) y es un mal conductor a temperatura ambiente. No se ha encontrado libre en la naturaleza.

Características principales
El boro es un elemento con vacantes electrónicas en el orbital; por ello presenta una acusada apetencia de electrones, de modo que sus compuestos se comportan a menudo como ácidos de Lewis, reaccionando con rapidez con sustancias ricas en electrones.[1] [2]
Entre las características ópticas de este elemento, se incluye la transmisión de radiación infrarroja. A temperatura ambiente, su conductividad eléctrica es pequeña, pero es buen conductor de la electricidad a alta temperatura.
Este metaloide tiene la más alta resistencia a la tracción entre los elementos químicos conocidos; el material fundido con arco tiene una resistencia mecánica entre 1.600 y 2.400 MPa.
El nitruro de boro, un aislante eléctrico que conduce el calor tan bien como los metales, se emplea en la obtención de materiales tan duros como el diamante. El boro tiene además cualidades lubricantes similares al grafito y comparte con el carbono la capacidad de formar redes moleculares mediante enlaces covalentes estables.

Historia
Los compuestos de boro (del árabe buraq y éste del persa burah) se conocen desde hace miles de años.[16] En el antiguo Egipto la momificación dependía del natrón, un mineral que contenía boratos y otras sales comunes. En China se usaban ya cristales de bórax hacia el 300 a. C., y en la antigua Roma compuestos de boro en la fabricación de cristal. A partir del siglo VIII los boratos fueron usados en procesos de refinería de oro y plata.[17]
En 1808 Humphry Davy, Gay-Lussac y L. J. Thenard obtuvieron boro con una pureza del 50% aproximadamente, aunque ninguno de ellos reconoció la sustancia como un nuevo elemento, cosa que haría Jöns Jacob Berzelius en 1824.[18] El boro puro fue producido por primera vez por el químico estadounidense W. Weintraub en 1909.[2] [19]
Obtención
Precauciones Ni el boro ni los boratos son tóxicos para los seres humanos y animales. La DL50 para los animales es de unos 6 g por kg de peso corporal. Las sustancias con LD50 por encima de 2g se considera no tóxico. La dosis mínima letal para los seres humanos no ha sido establecida, pero un consumo de 4 g/día se reportó sin incidentes, y las dosis clínicas de 20 g de ácido bórico para la terapia por captura de neutrones no causó problemas. Algunos peces han sobrevivido durante 30 minutos en una solución saturada de ácido bórico y pueden sobrevivir más tiempo en soluciones de bórax Los boratos son más tóxicos para los insectos que en los mamíferos. El borano y algunos compuestos gaseosos similares son muy venenosos. Como de costumbre, no es un elemento que es intrínsecamente venenoso, pero su toxicidad depende de la estructura.
Los boranos (compuestos de boro de hidrógeno) son tóxicos, así como fácilmente inflamables y requieren cuidados especiales durante su manipulación. El borohidruro de sodio presenta un peligro de incendio debido a su carácter reductor, y la liberación de hidrógeno en contacto con el ácido.

FUENTE :http://es.wikipedia.org/wiki/Boro